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Abstract

This paper develops a unified axiomatic framework for decision making under
uncertainty, from which both correlation-sensitive and expected multi-utility
models emerge as special cases. Unlike standard correlation-sensitive models
that assume completeness, it allows incomparability by replacing completeness
with two natural axioms: reflexivity, requiring consistency under symmetric
comparisons, and monotonicity, ensuring that mixtures with incomparable op-
tions cannot reverse existing preferences. When transitivity is additionally im-
posed, the framework collapses to the expected multi-utility model. The frame-
work offers a foundation for understanding how incompleteness, correlation sen-

sitivity, and transitivity jointly shape choice under uncertainty.

1 Introduction

In choices among uncertain alternatives, decision makers often care about how
the outcomes of those alternatives are correlated, yet they may be unwilling or
unable to form a complete ranking of all available options. This paper develops
an axiomatic framework for preferences that reflect both sensitivity to correla-
tion structures among outcomes and the possibility of incomparability between
options.

The framework formalizes a simple but pervasive observation: when evaluat-

ing uncertain options, people do not assess them in isolation but care about how
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their outcomes are linked across states of the world; these interdependencies, in
turn, make comparisons harder to resolve and can lead to indecisiveness. The
model represents such behavior through multiple ranking systems that evaluate
the same options, where disagreements among them generate partial rather than
complete orderings. When transitivity is additionally imposed, the framework
collapses to the expected multi-utility representation, which accommodates in-
decisiveness but not correlation sensitivity.

The paper’s main contribution is to unify two strands of decision theory.
Correlation-sensitive models capture how the joint distribution of outcomes,
that is, the correlation structure among outcomes, influences choice but typi-
cally impose completenes&ﬂ Expected multi-utility models, by contrast, allow
incompleteness but disregard correlations. This paper bridges these approaches
by relaxing the completeness assumption in correlation-sensitive models and in-
troducing Reflexivity and Monotonicity instead, thereby developing a framework
in which both correlation-sensitive and expected multi-utility models emerge as
special cases.

To see why correlation matters, consider an investor choosing between two
startups. The first is relatively safe, with a modest return conditional on success
and a 10% probability of success. The second is a “moonshot,” offering a massive
payoff but only a 5% chance of success. If the risks are independent, the expected
payoff of the moonshot may look more attractive: since both ventures are highly
likely to fail, the possibility of an extraordinary upside outweighs the modest
gain of the safer choice. The left panel of Figure [l illustrates this case under
independent risks.

Now change only the correlation structure, so that the risks are correlated
because both startups operate in the same sector, such as artificial intelligence,
and face a common regulatory risk. With probability 0.9, a new regulation
arrives and both ventures fail simultaneously. In that state, the choice of startup
is irrelevant: whichever option the investor selects, the outcome is the same. A
decision maker tends to give such states less weight because the counterfactual
payoff would not have differed. Attention is therefore shifted to the remaining
10% of the time when regulation does not occur. In those states, the safer
startup succeeds with certainty, while the moonshot succeeds with probability
0.5. The right panel of Figure [I] illustrates this case under correlated risks.

Notice that the marginal success probabilities of each startup remain un-

I Preferences are complete when, for any two alternatives, individuals are able to rank them;
otherwise, they are incomplete.



Independent risks Correlated risks
10%.—*® Success ® Success

\

\
/S/ 90% > Failure 13%7 T/I\ ﬂ%y’ SuccessT
\
h 50% e Failure

N /5%/7 ® Success™ \90%
\

95% ~~»¢ Failure ® Failure

Figure 1: Independent versus correlated risks in the startup ex-
ample. Decision nodes (squares) indicate points where the in-
vestor’s choice between the safer startup (S) and the moonshot
(M) is imposed, although the decision itself may have been made
earlier. Chance nodes (circles) represent random events with the
indicated probabilities. The left panel illustrates independent
risks: the safer startup with a 10% probability of modest suc-
cess and the “moonshot” with a 5% probability of a large payoff.
The right panel illustrates correlated risks: both startups oper-
ate in the same sector and fail together with 90% probability if
regulation occurs; when regulation does not occur (10% proba-
bility), the safer startup succeeds with certainty, while the moon-
shot succeeds with probability 50%. The choice is made before
the realization of the regulatory risk, so the options and their
marginal probabilities are identical in both panels. The marginal
probabilities of each option remain unchanged, but the correla-
tion structure changes counterfactual comparisons and may shift
preferences toward the safer option.

changed: the safer one still succeeds with probability 0.10 overall, and the
moonshot with probability 0.05. What has changed is how their outcomes
are linked. When regulation does not occur, the safer venture succeeds with
certainty, whereas the moonshot succeeds only half of the time. Under indepen-
dent risks, the rare prospect of a large payoff makes the moonshot attractive
despite its low overall probability. Under correlated risks, the states where both
ventures fail together remove that attraction, and the safer option may become
the more compelling choice.

This example illustrates the core notion of correlation sensitivity: a reversal
or shift in preference rankings that arises solely from a change in the correlation
structure of outcomes. A correlation-sensitive decision maker evaluates options
not only by their marginal probabilities, but also by the counterfactual outcomes

that would have materialized under alternative choices. When outcomes are



linked, these counterfactual comparisons change, and with them the relative
ranking of options, even though each option’s individual risk profile remains
fixed.

The startup example also highlights a second feature of decision-making:
correlation sensitivity not only changes preferences but also increases the com-
plexity of evaluation. When the joint probability distribution or correlation
structure is irrelevant, each lottery can be assessed solely based on its marginal
probabilities. When correlation becomes relevant, however, the decision maker
must additionally consider how counterfactual payoffs co-move across states.
This introduces contextual interdependencies that complicate the evaluation
problem.

Additional interdependencies reflect greater contextual complexity and, with
it, increased difficulty in resolving comparisons. A natural behavioral response
to such contextual complexity is indecisiveness, or more precisely, the incom-
pleteness of preferences. When the informational burden of fully processing
correlations is too large, the decision maker may refrain from collapsing all
comparisons into a complete ranking, leaving some alternatives incomparable.

This perspective links two strands of the literature. Classical models treat
incompleteness as exogenous, arising from multiple evaluative criteria or inde-
cisiveness. In contrast, the present framework views incompleteness as endoge-
nous to the informational demands of correlation sensitivity. Environments
with stronger dependence among outcomes entail richer interdependencies and
therefore a greater scope for incomparability in preferences.

The model developed in this paper represents indecisiveness through multi-
ple ranking systems that may yield conflicting evaluations, capturing the struc-
tural sources of incomparability. As correlation sensitivity increases the in-
terdependence among outcomes, comparisons become more context dependent
and harder to resolve. In such environments, individuals must assess alterna-
tives along multiple and sometimes incommensurable dimensions, making in-
completeness a natural byproduct rather than an anomaly. This perspective
also provides a behavioral interpretation of empirical irregularities such as pref-
erence reversals, context effects, and framing anomalies; instead of reflecting
noise or irrationality, these patterns may reveal genuine incompleteness in un-
derlying preferences.

The correlation-sensitive representation is obtained by imposing Complete-
ness, Strong Independence, and Continuity on preferences, |Lanzani| (2022)). The

representation for incomplete correlation-sensitive preferences is obtained by re-



placing the Completeness axiom with Reflexivity and Monotonicity. Hence, im-
posing Reflexivity, Monotonicity, Strong Independence, and Continuity on the
preference set yields the representation. Continuity plays a mainly technical
role, while Reflexivity ensures that when two options have identical marginal
distributions and a symmetric correlation structure, the decision maker is indif-
ferent between them.

Strong Independence extends the classic strong independence axiom to cor-
related settings. It requires that if A 72 B and C zZ D, then for any « € (0, 1),

aA+(1—a)CZaB+(1—a)D,

where the mixtures share the same probability «. This distinction is crucial:
under correlation sensitivity, the decision maker cares not only about the chosen
option’s outcome but also about the counterfactual outcome of having chosen
differently. In this mixture interpretation, with probability o the comparison is
between A from the first mixture and B from the second, and with probability
1—a between C' and D. Both mixtures are therefore tied to a single probabilistic
draw.

Monotonicity requires that preferences over mixtures preserve established
rankings. If one option is preferred to another, then combining them with
a pair of incomparable alternatives cannot reverse that ranking. Formally, if
A7 B and C and D are incomparable, then for any « € (0,1),

aB+(1—a)D% aA+(1-0a)C,

with the mixtures again sharing the same probability c. Thus, with probability
« the comparison involves A versus B, and with probability 1 — « it involves
C versus D. Monotonicity, therefore, rules out preference reversals induced
by mixing with incomparable options, while still allowing incomparability to
remain a feature of the relation.

As an example of the Monotonicity axiom, consider a DM deciding how to
commute to work. She finds walking and biking incomparable; neither is strictly
preferred to the other, but both are strictly preferred to driving, which in turn
is strictly preferred to taking the subway: Walking|| Bike > Car 7= Subway. On
rainy days, walking and biking are unavailable, leaving only Car and Subway,
for which the ranking is known: Car is preferred to Subway. On sunny days, all

options are available, but walking and biking remain incomparable.



Now consider two commuting plans:

Plan 1: Subway on rainy days, Bike on sunny days.

Plan 2: Car on rainy days, Walk on sunny days.

Without Monotonicity, it could be possible that Plan 1 is ranked above Plan
2, even though on rainy days car is known to be strictly better than subway.
Monotonicity rules this out: When options are mixed with incomparable alter-
natives (bike vs. walk), the known ranking between car and subway cannot be
reversed. Hence, Plan 1 cannot be preferred to Plan 2.

Finally, note that if Walking were (weakly) preferred to Bike, then by Strong
Independence Plan 1 could not be preferred to Plan 2 either.

If preferences satisfy Reflexivity, Monotonicity, Strong Independence, and
Continuity, these conditions are both necessary and sufficient for the model
representation. Let X denote the set of all possible outcomes that options can
yield in different states of the world, and let x € X and y € X represent the
possible outcomes of options A and B, respectively. Preferences that satisfy the
above axioms admit the representation if there exists a nonempty subset ® of
the subspace of skew-symmetric functionsE| such that for every pair of options

A and B in the choice set, A is weakly preferred to B if and only if

Z d(z,y)m(z,y) = 0 for every ¢ € ®.
€y

Here, m(x,y) denotes the probability of the state of the world in which option
A yields x and option B yields y. Intuitively, ¢(x,y) captures how much the
joint realization (z,y) favors z over y: ¢(z,y) > 0 if and only if x is (weakly)
preferred to y, and larger values indicate a stronger comparison in favor of x.
The collection ® can be interpreted as a set of ranking systems, each providing
a separate evaluation of the options; when these rankings conflict, alternatives
remain incomparable, giving rise to incompleteness.

As a special case, if ® consists of a single ¢, unique up to a positive linear
transformation, the preference is complete|Lanzani| (2022]) shows that Complete-
ness, Strong Independence, and Archimedean Continuity are then necessary and
sufficient conditions for such a correlation-sensitive representation. Moreover,
if Transitivity is added, the model reduces to the standard Expected Utility
model.

If Transitivity is imposed on the preference set in addition to Reflexivity,

2A function ¢ : X x X — R is skew-symmetric if ¢(x,y) = —¢(y, ) for all ,y € X. In
particular, this implies ¢(z,z) = 0 for every z € X.



Strong Independence, Monotonicity, and Continuity, the representation reduces
to the Expected Multi-Utility model, [Dubra et al.| (2004).

The Expected Multi-Utility model establishes that a binary relation over
lotteries satisfies Reflexivity, Transitivity, Independence, and Continuity if and
only if there exists a closed and convex set of utility functions such that, for
every pair of lotteries, the first is weakly preferred to the second if and only if
its expected utility is greater than or equal to that of the second for all func-
tions in the set. Having multiple utility functions in the representation can be
interpreted as the decision maker being uncertain about, or unwilling to com-
mit to, a single evaluative stance. For example, a subject may simultaneously
have different risk attitudes, with none being strictly more valid than the oth-
ers. In such cases, distinct utility functions provide competing rankings over
risky options, and incompleteness arises whenever these rankings disagree. This
framework captures the intuition that individuals may find it difficult to make
definitive choices; however, it does not account for correlation sensitivity.

As mentioned before, the need to accommodate incompleteness becomes
especially important in correlation-sensitive environments. When evaluations
depend not only on marginal distributions but also on the correlation structure
of outcomes, disagreements between evaluative perspectives are more likely to
arise and harder to resolve. A single complete ordering risks obscuring these
conflicts through arbitrary tie-breaking or ad hoc assumptions. By relaxing
completeness, the model offers a richer and more accurate account of choice
behavior in such settings. It emphasizes that indecisiveness can be a systematic
feature of rational evaluation when correlation-sensitive concerns increase the
complexity of the decision problem.

The next section briefly reviews the related literature. The paper is orga-
nized as follows. Section [2] introduces the notion of preference sets, following
the framework developed by |[Fishburn| (1990a), which provides the foundation
for incorporating correlation structures into the notation. Section [3] discusses
the interpretation of mixtures in this framework. Section [4]establishes the char-
acterization of the incomplete correlation-sensitive representation. Section
discusses the role of transitivity and presents the second main result, showing
that the model reduces to the expected multi-utility framework when transitiv-

ity is imposed. Section [6] concludes.



1.1 Related literature

Correlation-sensitive models of decision making under uncertainty account for
how the correlation between risky options can influence choice behavior
(1982), [Fishburn| (1989), and Kdszegi and Szeidl (2013)). Frameworks such as
regret theory (Loomes and Sugden, [1982) and salience theory
fall within this class. In regret theory, the effect of correlation structure

arises from counterfactual comparisons between the chosen option and the fore-

gone alternative, whereas in salience theory, it is driven by the allocation of
attention and weight to different possible states.

The foundations of this literature trace back to the seminal contributions
of [Fishburn| (1989), [Sugden| (1993), and |Quiggin| (1994). Subsequent work has
provided formal axiomatizations of these models: [Diecidue and Somasundaram|
for regret theory (Loomes and Sugden| 1982), and [Ellis and Masatlioglu|
together With for rank-dependent and continuous versions

of salience theory, respectively. Furthermore, Herweg and Miiller| (2021]) demon-

strates that regret theory is a special case of salience theory, while salience itself
can be viewed as a special case of generalized regret theory.

To incorporate the correlation structure into the notation, I build on the pref-

erence set framework introduced by (19904)) (application in SSA model
[Fishburn| (1990b)) and employed by (2022)) to generalize correlation-

sensitive models. Rather than defining a binary relation over lotteries, the

preference set approach defines a binary relation over options, considering their
joint distribution. where each option is characterized not only by its marginal
probability distribution but also by its joint distribution with every other option.

The correlation-sensitive model is a special case of the model
representation developed in this paper. Moreover, when Transitivity is imposed
in addition to Reflexivity, Strong Independence, Monotonicity, and Continuity,
the representation reduces to the Expected Multi-Utility model
and Dubra et al.| (2004)).

Dubra et al|(2004) show that a binary relation over lotteries is a preference

relation satisfying Independence and Continuity if and only if there exists a
closed and convex set of utility functions such that, for every pair of lotteries,
the first is weakly preferred to the second if and only if its expected utility is
greater than or equal to that of the second for all functions in the set. In this
framework, a preference relation is taken to be a reflexive and transitive binary

relation, in contrast to the standard theory where completeness is also assumed.



In the expected multi-utility model of [Dubra et al.| (2004)), preferences can
be represented by a closed and convex set of utility functions, each reflecting
a possible evaluation of lotteries. Having multiple utility functions in the rep-
resentation can be interpreted as the decision maker being uncertain about,
or unwilling to commit to, a single evaluative stance. For example, a subject
may simultaneously have different risk attitudes, with none being strictly more
valid than the others. In such cases, distinct utility functions provide competing
rankings over risky options, and incompleteness arises whenever these rankings
disagree. This perspective captures the intuition that individuals often experi-
ence difficulty making definitive choices when options involve trade-offs across

different dimensions.

2 Preference sets

The preference set framework of [Fishburn| (1990a)), is adopted to generalize
correlation-sensitive models. In this framework, preferences are defined over
options characterized by both their marginal and joint distributions, rather
than solely over lotteries.

Let X = {z1,22,23,...,2,} denote a fixed set of possible outcomes, and let
A(X x X) be the set of all joint probability distributions over X x X. Each
element of A(X x X) specifies the joint distribution of payoffs associated with

a pair of options.

e AX x X):
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m;; denotes the probability that the realized state yields outcome x; from the
first option (listed in the rows) and outcome z; from the second option (listed
in the columns).

The joint probability distributions corresponding to the cases in Figure|l|are
shown below. In each matrix, the safer startup S is represented by the rows.

From left to right, the matrices correspond to the independent and correlated



cases, respectively.

Failure Success Success™ Failure Success Success™
Failure 0 0.005 0.095 Failure 0 0.05 0.05
Success 0 0 0 Success 0 0 0
Success™ 0 0.045 0.855 Success™ 0 0 0.9

Preferences are represented by a preference set II C A(X x X). The inter-
pretation is that, for every joint distribution 7w over X x X, the DM prefers to
receive the outcome indicated by the row.

It is important to note that, in this framework, the state space is endogenous:
it is constructed relative to the particular pair of options under consideration.
For example, when acts are defined over a state space with objective probabili-
ties, any pair of acts can be associated with a joint distribution 7 € A(X x X).
However, if there are more than two acts, knowing all pairwise joint distribu-
tions does not, in general, identify a unique set of objective probabilities over
the underlying states. To illustrate, suppose there are three acts and four out-
comes. The maximum number of possible states is 43, implying 4% unknown
state probabilities. From the pairwise joint distributions, there are 3 x 42 equa-
tions, insufficient to uniquely determine the probabilities. Consequently, some
information about the higher-order correlation structure across all options is
inevitably lost when more than two options are present. In this sense, the pref-
erence set framework is less expressive than a binary relation over acts, yet more

structured than a binary relation over lotteries.

3 Mixtures

The correlation structure between two risky options refers to the statistical
dependence of their outcomes. Formally, it is determined by the joint probability
distribution, which specifies how the realization of one option is linked to the
realization of the other. Two options may share identical marginal distributions
yet differ in how their outcomes co-move. A decision maker may evaluate the
same lotteries differently depending on whether they are positively, negatively,
or independently correlated, even though their individual outcome probabilities
remain unchanged. Sensitivity to the correlation structure is a fundamental
feature of the model. I capture this by letting 7 € A(X x X) denote the joint

probability distribution over the outcomes of a pair of options.
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Incorporating correlation sensitivity explicitly into the axiomatic framework,
particularly in the definition of mixtures, is essential to ensure that the repre-
sentation faithfully reflects how correlations influence choice behavior.

One of the central axioms in decision theory is the Independence axiom.
It states that if option A is weakly preferred to option B, then for any other
option C' and any « € (0,1), the mixture A + (1 — a)C is weakly preferred to
aB+ (1—-a)C:

A7z B,ae(0,1)=ad+(1—-a)CzaB+(1—a)C.

The usual interpretation is that in the mixture, the decision maker receives op-
tion A (or B) with probability «, and option C' with probability 1 —«. However,
the axiom leaves implicit the correlation structure between the two mixture lot-
teries. In other words, when comparing A+ (1 —a)C and B+ (1 —«a)C, it is
not specified how the randomization is jointly implemented, and thus the axiom
requires the preference to hold regardless of the correlation structure between
the two mixtures.

To make this point precise, let X = {A, B,C} denote a set of possible
outcomes (not necessarily payoffs), and consider A(X x X), the set of all joint
probability distributions over pairs of outcomes. Each element of A(X x X) rep-
resents a possible correlation structure between the two mixtures. For example,
the matrices below illustrate the cases of independence and perfect correlation
for two mixtures €A+ (1 —«a)C and aB+ (1 —a)C (with A+ (1 —«)C on the
rows and aB+ (1 —«)C on the columns). In the independent case (left matrix),
knowing the outcome of one option provides no information about the outcome
of the other. By contrast, in the perfectly correlated case (right matrix), once
the outcome of one mixture is realized, the outcome of the other mixture is also

fully determined.

A B C A B C
A |0 a? all —a) A |0 « 0
B |0 0 0 B [0 0 0
C 0 a(l—a) (1-a)? C [0 0 1-«

In the classic independence axiom, these are not the only cases; for any

r € [0, min(«, 1—a)], the matrix below represents a possible correlation structure

11



between the two mixtures aA + (1 — a)C and aB + (1 — a)C.

A B C
A 0 a—r r
B |0 0 0

C 0 r l—a-—r

The strong independence axiom is very similar, but instead of having the
same option C' in both mixtures, I assume C' is weakly preferred to option D.
Then, for any « € (0,1), the mixture aA + (1 — «)C is weakly preferred to
aB+ (1 —-«a)D:

ArZB,CrZD,ae(0,1)=aA+(1—-a)CZaB+(1—a)D.

As before, I can represent both the independent and the correlated cases (with

rows and columns corresponding to zero probabilities omitted).

B D B D
« 0
0 11—«

The importance of the correlation structure for a correlation-sensitive DM is

A

c C

a(l—a) (1-a)?

that, in the correlated version, option A is always compared to option B and
option C is always compared to option D. This contrasts with the independent
case, where A or B may instead be paired with C' or D, making the evaluation
sensitive to the specification of the joint distribution.

In classical decision theories, the DM is typically assumed to be correlation-
insensitive: the correlation structure is disregarded both in the specification of
the choice set and in the interpretation of mixtures. By contrast, once the joint
distribution is made explicit, the interpretation of mixtures becomes fundamen-
tally different. Let X be a set of outcomes, and let A(X x X) denote the set of
all joint distributions over X x X. Any m € A(X x X) can be represented as
a binary choice set, where the row marginal corresponds to the first option, the
column marginal to the second option, and 7 itself specifies their joint distribu-
tion. Now consider 7,7’ € A(X x X) and o € (0,1). Since A(X x X) is convex,
the mixture am + (1 — )7’ also belongs to A(X x X). If = encodes options A
(rows) and B (columns), while 7’ encodes options C' (rows) and D (columns),

then am + (1 — o)’ corresponds to a correlated representation of the mixtures

12



aA+ (1 —a)C and aB+ (1 —a)D.

B D
o 0

0 1-«

As a reminder, m € II indicates that the option represented on the row is

A
c

weakly preferred to the option represented on the column. Within this frame-

work, the strong independence axiom can be reformulated as follows:
Vo, e ,a € (0,1) = ar+ (1 —a)r’ €1IL.

That is, if two joint distributions 7 and 7’ both encode weak preference of the
row option over the column option, then any convex combination of the two
must preserve this weak preference relation.

In this framework, strong independence applies only to correlated mixtures
of options. In this sense, it is a weaker condition than the classical strong
independence axiom, which requires preservation of preference under mixtures
with all possible correlation structures. In fact, the axiom here resembles a
statewise dominance condition: because mixtures are correlated, each pair of
options is evaluated state by state, so any mixture that is weakly preferred in
every state will dominate its alternative.

To wrap up this section, it is important to note that mixtures in this set-
ting represent correlated mixtures. Specifically, for any 7,7’ € A(X x X) and
a € (0,1), the mixture am + (1 — )7’ corresponds to a situation where, with
probability «, the row and column options of 7 are compared against each other,
and with probability 1—q, those of 7’ are compared. Consequently, when axioms
are applied to such mixtures, they are inherently weaker than axioms requiring

preservation of preference under all possible correlation structures.

4 Incomplete Correlation-sensitive Model

Let X be an arbitrary nonempty finite set with n elements, | X| = n. Elements
of X can represent outcomes, options, or probability distributions. The space

of all possible joint correlation structures over X x X is denoted by A(X x X),

13



which I refer to simply as A. Formally,

A=SmeR™ | m; >0forallij=12...m» > m=1
i=1j=1

Each m € A represents a joint probability distribution over X x X, where m;;
denotes the probability assigned to the pair (z;,z;) € X x X. The set A is a
closed, convex subset of R — specifically, the (n? — 1)-dimensional simplex
within the hypercube [0, 1]”2.

I define a subset IT C A to represent the decision-maker’s (DM’s) preference
set. The interpretation is as follows: the DM faces a joint distribution 7 € A,
and must choose whether to be paid according to the outcome indexed by the
row or by the column.

7w € II if and only if the DM (weakly) prefers to be paid according to the

row outcome rather than the column. That is,
7 € I & row outcome is (weakly) preferred.
For any m € A, T is the transpose of m:
V(z,y) € X x X : 7(z,y) = 7(y, x)

It simply relabels the row and column into each other. I define II as the set of

transposes of matrices in II:
H={reA:7eclll

If a distribution m € A satisfies 7 ¢ II and 7 ¢ II, then the DM finds the
row and column options incomparable, indicating an incomplete preference. I

define the set of such distributions as:
I=A\(TTuy I0).

I identify C'(X x X) with the space of all real-valued functions on X x X,
i.e., R"*™  The subspace of skew-symmetric functions corresponds to skew-

symmetric matrices:

CH¥(X xX):={ceC(X x X) :c(z,y) = —c(y,z) for all z,y € X}.

14



Incomplete correlation-sensitive model representation:
A preference set II admits an incomplete correlation-sensitive representation
if there exists a nonempty subset ® of C*°(X x X) such that, for any = in
A(X x X), I have 7 € I iff

Z d(z,y)m(z,y) = 0 for every ¢ € ®.
T,y

In this case, I say that ® is an incomplete correlation-sensitive representation
for II.

Axiom 1. (Reflezivity) For any 7 such that m = 7, both m and 7 are in the

preference set, w,w € II.

This axiom captures the idea that the DM should be indifferent between
two options whenever the two share the same marginal distributions and the
correlation structure is symmetric. Formally, Reflexivity guarantees that if 7 is
equal to its transpose, then both m and 7 belong to the preference set, reflecting
the principle that only differences in marginal probabilities or asymmetric cor-
relation structures can justify a strict ranking or incomparability. In particular,
symmetry cannot give rise to incomparability: the decision maker must treat

such options as equivalent.

Axiom 2. (Strong Independence) For all w,n" € 11, and all « € (0,1),
arm + (1 —a)7’ € IL

Moreover, if ' € II, then

ar + (1 — o)’ e 1L

I1 is the strict preference set, 1 = {w € 1 : 7 ¢ II}.

As discussed in Section [3] the key difference between the classical strong in-
dependence axiom and its formulation in this setting is that I restrict attention
to correlated mixtures. This restriction makes the axiom weaker than the clas-
sical version, which requires independence to hold across all possible correlation
structures. In the present framework, strong independence simply ensures that

the preference set II is convex.
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Axiom 3. (Monotonicity) If m € Il and 7’ € I, then for all o € (0,1),
am+ (1 —a)r’ ¢ 1I1.

This axiom requires that correlated mixtures involving incomparable options
cannot reverse the order between comparable ones. Formally, if 7 € lTand 7’ € T
(incomparable), then any correlated mixture of the two options in = with those
in 7/ must not generate the opposite ranking of 7. In other words, preferences
over mixtures must respect known preferences and cannot allow incomparability
to override them.

Immediate results of this axiom:

If 7 € I and 7’ € I, then for all « € (0,1),

ar+ (1 —a)r’ ¢ 10
If € (IINT) and 7’ € I, then for all « € (0, 1),
ar+(1—a)r’' €l

Axiom 4. (Continuity) II is closed.

Theorem 1. A preference set Il satisfies axioms if and only if I1 admits

an incomplete correlation-sensitive representation.

Proof. See Appendix [ |

5 Transitivity

Defining transitivity in this framework is more subtle than in the classical case.
In standard models, preferences are defined directly over probability distribu-
tions, and transitivity simply requires that if one option is preferred to a second
and the second is preferred to a third, then the first must also be preferred
to the third. In our setting, however, each option is not only represented by
its own probability distribution but also by the correlation structure it admits
with every other option. This means that the preference relation is inherently
pairwise: the comparison between two options depends on the joint distribu-
tion that links them. As a result, formulating transitivity requires care, since

the indirect comparison of two options through a third might rely on different
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correlation structures than their direct comparison. A suitable version of tran-
sitivity in this environment must therefore ensure that the preference relation
remains logically coherent across chains of pairwise comparisons, while acknowl-
edging that correlations are part of the primitives of choice rather than external
assumptions.

Lanzani| (2022)) formulates transitivity with respect to the marginal proba-
bility distributions of the options only:
For all 7, x,p € A(X x X), if 13 = x1, p1 = 71, and ps = X2, then

(mell,xyell) = pell

For any joint probability distribution 7 € A(X x X), 71, 72 € A(X) are denoted
as its first (row) and second (column) marginal distributions, respectively. This
formulation avoids the complications of correlation structures by abstracting
away from the joint distributions and focusing solely on the marginals.

When I move to the case of more than two options in our framework, some
part of the information on the correlation structure among all the options is nec-
essarily missing. In particular, while pairwise comparisons are grounded in well-
defined joint distributions, extending these to a consistent ranking over three
or more options requires compatibility conditions across the different pairwise
correlation structures. The challenge is therefore to define a transitivity axiom
that ensures coherence of the preference relation without assuming a complete
specification of the higher-order joint distribution among all the options.

As an illustration, consider the matrices 7, x, and p in Table [I] These dis-
tributions satisfy the requirements of the transitivity axiom, namely 7wy = x1,
p1 = 71, and pa = xo. Hence, if both m and x belong to the preference set,
transitivity requires that p must also belong to the preference set. In |Lanzani
(2022)), this example is presented as a transitivity failure, and they argue that
from the perspective of a correlation-sensitive DM, it is not plausible to have all
m, X, and p in II simultaneously. In contrast, I examine whether these options
can be embedded in a common state space and show that their pairwise corre-
lation structures are mutually inconsistent, making it impossible to construct a
single joint probability space containing all three lotteries.

In Table[T] suppose that when three options are present in the choice set, the
marginal distributions align as follows: the first option’s marginal is p; = 71, the
second option’s marginal is mo = x1, and the third option’s marginal is ps = x2.

Consider p: in the state where option 1 yields outcome 10 and option 3 yields
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T |7 2 o8 1
x| 8 1 T

150 2 6 - % 0 150 6 (;)

2 210 1 12

00 12 200 |1 0

Table 1: These three joint probability distributions illustrate a
failure of Transitivity due to salience sensitivity (Lanzani, |2022).
They argue that for a salience-sensitive DM, it is reasonable to
have m € I, x € II, and p ¢ II.

outcome 8 (with probability i), there are two possible outcomes for option 2,
namely 2 or 7. However, if option 2’s outcome is 7, then the probability that
option 1 yields 10 is zero; conversely, if option 2’s outcome is 2, then the prob-
ability that option 3 yields 8 is zero. Hence, it is impossible to construct three
distinct options consistent with these joint correlations. Put differently, there is
no way to define a state space and associated probabilities that simultaneously
realize all three options with the specified pairwise correlation structures.
With the notation of joint probability distributions for pairs of options, the
correlation structure among all options is ignored when more than two options
are under consideration. In the transitivity axiom of [Lanzani (2022), the pair-
wise correlation structure is likewise ignored, which might lead to the nonex-
istence of a common state space. This axiom might be considered strong in a
setting where the main assumption is that individuals are correlation-sensitive.
Next, I formalize a correlation-consistent transitivity axiom that uses a triple

joint distribution to ensure that pairwise correlation structures are compatible.

Axiom 5. (Strong Transitivity) Let mapc € A(X3) be a joint distribution over

three options, and denote its pairwise marginals by

TaB(2,y) = Z TaBc(®,Y, 2),
z€X

WBC(ya Z) = Z ’/TABC(xvya Z)v
zeX

mac(z,2) =Y mapc(@,y,2),
yeX

If tap €1l and mpc € 11, then mac € 1I1.

Theorem 2. Let II admit an incomplete correlation-sensitive representation,

i.e., let ® be a nonempty subset of C*°(X x X) representing II. Then, the
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following statements are equivalent:

1. 11 satisfies Aziom [5];

2. For every ¢ € @, it holds that
P(x,2) = d(z,y) + d(y, 2), Va,y,z € X.

Proof. See Appendix [A22] [ |

The new transitivity axiom explicitly requires the existence of a common
state space, ruling out transitivity claims built on inconsistent pairwise marginals.
In the literature, regret aversion is typically captured by ¢(z, z) being greater
than ¢(z,y) + ¢(y, 2) for all z > y > z. By Theorem [2| imposing transitivity
forces the ¢ functions to be regret-neutral, that is, ¢(z, z) = ¢(x,y) + ¢(y, 2)
for all z,y, z € X. Consequently, models such as salience and regret, which are
generally nontransitive, inherently assume regret aversion.

Regret neutrality, expressed as ¢(z,z) = é(z,y) + &(y, z), together with
the skew-symmetry of ¢, implies that ¢(x,y) must take the separable form
o(z,y) = g(x) — g(y) for some function g.

Consider a function ¢ satisfying skew-symmetry, ¢(z,y) = —é(y,z), and
regret neutrality, ¢(z, z) = ¢(z,y) + ¢(y, z). Let

0¢(x,y) 9¢(z,y)

b1(z,y) = T,(bz(a:,y) = Ty

By regret neutrality,
o(x,2) = ¢(x,y) + ¢y, 2) = d1(x, 2) = P1(2,y).

Differentiating with respect to z gives

8¢1(x, Z) _ 6(;51(95, y)
0z N 0z

= ¢12(z,2) = 0.

Ruling out non-additive interactions, this implies that ¢ is additive in its ar-
guments, confirming that the general form of ¢ consistent with skew-symmetry

and regret neutrality is

o(x,y) = g(zx) — g(y)

for some function g. Thus, imposing transitivity reduces ¢ to a separable form,

making the model equivalent to the expected utility representation. In the
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context of incomplete preferences, the resulting structure corresponds to an
expected multi-utility representation.

Since the framework allows for incomplete preferences, the transitivity ax-
iom can be relaxed to a weaker requirement that merely prevents preference
cycles. The Weak Transitivity axiom does not impose any preference among
the options in a chain, but only rules out configurations that would result in

cyclical rankings.

Axiom 6. (Weak Transitivity) Let mapc € A(X?) be a joint distribution over

three options, and denote its pairwise marginals by

Tap(T,y) = Z Tapc(T,y, 2),
zeX

WBC(ya Z) = Z WABC(mvya Z)7
zeX

mac(x,2) =Y mapo(r,y,2).
yeX

If map €1 and wpco €11, then Tac ¢ 1.
Conjecture 3 (Weak Transitivity and Sign-Diversity). Let IT admit a correlation-

sensitive multi-utility representation via a nonempty set ® C Css(X x X), i.e.,

rell <+ Z o(z,y)m(x,y) >0  for every ¢ € P.
z,yeX

For z,y,z € X, define the triple gap
A¢(x,y,z) = ¢($,Z) - ¢($,y) - d)(yaz)

Say that ¢ is regret-averse on (z,y, z) if Ay(x,y, z) > 0, regret-taking if Ay(z,y, 2) <
0, and regret-neutral if Ay(z,y,z) = 0.
Then 11 satisfies Weak Transitivity if and only if, for every triple of distinct

outcomes x,y,z € X, one of the following holds:

1. There exist ¢, ¢~ € ® such that Ay+(x,y,2z) > 0 and Ay-(x,y,2) <0

(sign-diversity), or

2. Ay(z,y,2) =0 for all p € @ (neutrality).
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6 Conclusion

One of the key advantages of this representation is its capacity to accommo-
date incomplete preferences through the use of multiple evaluation parameters.
When a single evaluation function ¢ suffices, the model recovers complete pref-
erences. However, when multiple — and potentially conflicting — evaluations
are required, incompleteness naturally emerges within the preference relation.

In the presence of incompleteness, external factors such as framing, repre-
sentation, or cognitive biases may influence individuals and nudge them toward
one option over another. This highlights that some individuals do not possess
well-defined rankings for all alternatives — and, crucially, their choices need
not be interpreted as arising from some hidden or fundamental decision-making
criterion.

Allowing for explicit incompleteness addresses broader challenges in decision
theory. It acknowledges that the absence of complete, transitive rankings is not
necessarily a sign of irrationality, but rather an inherent feature of decision-
making under complexity, uncertainty, or ambiguity. This framework challenges
the traditional assumption of premature completeness and underscores the im-
portance of models that can accommodate both temporary indecision and per-
sistent incompleteness as stable outcomes.

The incomplete correlation-sensitive representation achieves this through a
set of intuitive axioms. Because the framework recognizes correlation structure,
mixtures are correlated. The strong independence axiom resembles a statewise
dominance (or monotonicity) principle, stating that if one option yields weakly
preferred outcomes in every state, it is weakly preferred overall. Another ax-
iom governs mixtures involving comparable and incomparable options, ensuring
that incomparable pairs cannot reverse the established order of known prefer-
ences through mixing. Together with reflexivity and continuity, these axioms
characterize the incomplete correlation-sensitive representation.

When transitivity is imposed, the correlation sensitivity is removed, while
the possibility of incompleteness remains. Both the complete correlation-sensitive
model and the expected multi-utility model arise as special cases of the incom-
plete correlation-sensitive framework.

As the next step, a natural direction is to explore how the representation
evolves under further relaxations of the axioms. For instance, replacing the
strong independence axiom with a correlated independence condition may re-

veal how these axioms interact—particularly since the standard expected multi-
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utility model relies on the independence rather than its strong version. Similarly,
removing the reflexivity axiom could provide insights into choice behavior when
self-consistency is not guaranteed, allowing the model to explore decision con-
texts where preferences are formed dynamically or remain unresolved. These
extensions would further clarify how the mixture-based assumptions shape the
boundaries between correlation sensitivity, incompleteness, and classical multi-

utility representations.
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A Proofs

A.1 Proof of Theorem [

Preliminaries. Let X be a finite set with |X| = n, and let A C R™*"™ denote
the set of all joint probability distributions over X x X:

A={meR™" [my;>0forallij=1,2,...,m» Y mj=1

I define a subset IT C A to represent the DM’s preference set (i.e., 7 € Il &
the row is weakly preferred). For any m € A, let @ to denote the transpose of

m. II is the set of transposes of matrices in II:
O={rcA:7eclll
The set of incomplete preferences is defined as:
I={reA:n¢Iland 7 ¢ II}.

The set A is a closed and convex subset of R"". By Axioms [2] and [4] the
preference set II C A is convex and closed, respectively. Since the transpose
operation is linear and continuous, it follows that II, the set of transposes of
elements in I, is also a closed and convex subset of A. In contrast, the set of
incomparable options I = A\(II U II) is not necessarily closed or convex and

may consist of disconnected components within A.

Necessity of the axioms. Considering every ¢ € ® is skew—symmetric, i.e.,
o(y,z) = —¢(z,y) for all (z,y) € X x X,

Z W(xay)qb(xay) = - Z ﬁ(x,y)qb(x,y).

(z,y)eX XX (z,y)eX x X

Reflexivity is necessary since if 7 = 7:

Z m(z,y)p(z,y) = — Z 7(x,y)p(x,y) = 0.

(z,y)eX XX (z,y)eX xX

Therefore, the multi—utility evaluation assigns the same value to 7 and its trans-

pose, and in particular, this value is equal to zero for all ¢ € ®. Consequently,
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both 7 and 7 satisfy the inequalities of the representation and hence belong to
the preference set, establishing reflexivity.

For strong independence, if 7,7’ € I and « € (0,1), then for all ¢ € P,

S (am+ (1)) (@ y)d(e,y) =

(z,y)eX xX

a > w@yey)+(l-a) Y wéwy) >0

(z,y)eX XX (z,y)EX XX

If © € II:

a Y a@ye@y)+1-a) Y w(y)é(,y) >0

(z,y)eX XX (z,y)eX xX

For the axiom 3| let # € I, #’ € I, and « € (0,1). By the definition of T,
there exists a nonempty subset ® C ® such that

Z W’(J),y) ¢($,y) Z 0 for all ¢ S q),,
(z,y)eX XX

Z 7' (z,y) p(z,y) <0 forall p € ®\ &'
(z,y)eXxX

Consider the convex combination am + (1 — a)n’. For each ¢ € @, linearity
implies

Z (am + (1 — a)n’)(z, y)p(z,y) > 0.

(z,y)eX xX

Suppose, to the contrary, that all of these inequalities hold with equality. Then

S (ar+(1-a)r) (@ y) dla,y) =0, Voed,

(z,y)eX XX

which is equivalent to

Y Ay élay) =0, Veed,

(z,y)eX XX

contradicting the assumption 7’ € I. Hence, there exists at least one ¢* € @'
such that

> (ar+ (1 —a)r) (@,y) 6 (@,y) > 0,

(z,y)EX XX
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which implies
arm+ (1 —a)r’ ¢ 1I1.

For Continuity, let 7 € A\ II and denote

Ly~ <7T) = Z m(z,y) ¢*(z,y) <O0.

(zy)eX xX

X is finite, so A is a finite-dimensional simplex and all sums are finite. For
any arbitrary 7 in A \ II, there is some ¢* € ® with Lg«(7) < 0. The map
Ly« : A — R is linear, hence continuous. The preimage of the open set (—o0,0)

under a continuous map is open, so
U= L} (~0,0))

is an open neighborhood of 7. By definition, every element of U fails the in-
equality required for being in IT, so U C A\ II. Therefore, A\ II is open and IT

is closed.

Sufficiency of the axioms. To prove the sufficiency of the axioms, the core
of the argument establishes that, under the given axioms, the set of incomplete
preferences I cannot have more than two disconnected components. Once this
structural property is established, the representation follows directly from the
number of such components.

The proof unfolds in three stages. First, the behavior of line intervals con-
necting pairs of points in I is classified according to their interaction with the
sets IT and II. This classification is subsequently extended to triangular config-
urations by examining the intervals formed between each pair of three points
contained in I. Finally, it is shown that the existence of more than two dis-
connected components in I would necessitate a triangular configuration that
violates the axioms. This contradiction excludes such a possibility and thereby
completes the argument.

To bridge the gap between the outline above and the detailed steps of the
proof, the concept of a line interval is first defined, as it provides the basic
building block for classifying geometric configurations within I.

For any 7,7’ € A, the line interval w7’ is defined as the set of all convex
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combinations of m and 7’:
o’ = {Ar+ (1= N7'|A e (0,1)}

Given the definition of a line interval, the possible positions of the interval
mr’ for m,n’ € I, are now categorized with respect to the subsets in A. The

following lemma formalizes this classification.

Lemma 1. For any w,«’ € I, the line interval =’ belongs to exactly one of the

following categories:
e Type 1 (Fully Contained): nr’' NIl =@ & an' NIl =@
o Type 2 (Only Crossing I1): nn' NIl # @ & nr' NIl = &
e Type 3 (Only Crossing ﬁ) ar' NI =@ & mr' NIl # @
e Type 4 (Only Crossing INT): 7o' N(IINT) # @ & 7' N (fIUﬁ) =g

Proof. A is partitioned into four subsets I, ﬁ, IINI, I C A. For any 7,7 € I,
I may have Awr 4+ (1 — A\)#x’ € I for all A € (0,1) and the entire interval 77’ lies
within I:

Type l: ' c I e’ NIl=0 & o' NI = @.
Otherwise, there exists at least one A* € (0,1) such that A*m + (1 — \*)n’ &€ I,
i.e., the interval partially intersects A\I.

7 =X+ (1= 97
Since 7* ¢ I, 7 belongs to one of the subsets f[, ﬁ, or ITNTL.
If 7* € II, then by axiom 3| 77* NIl = @ and 7*7’ NII = @. For all
A € (0, \*) U (A*, 1), the convex combination A + (1 — )7’ cannot be in II:

Type 2: 7' NIl # @ & 7’ NIl = @.

Since II is convex and closed by axioms [2|and [4] respectively, I can further argue
that there exist Ay, A2, 0 < A1 < Ay < 1 such that:

VAE AL, = A+ (1 -\ ell

VA€ (0,A\) UM, )= Ar+(1 -\’ el
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Likewise, if 7* is in ﬁ, then by axiom [3] 77* NIl = @ and 7*7' NIl = &.
For all A € (0, A*) U (A\*, 1), the convex combination Aw + (1 — A\)7’ cannot be
in II:

Type 3: 7' NIl =@ & nn’ NIl # @.

Since II is a set of all transposes of matrices in II, II is also convex and closed
and I can further argue that there exist A1, A2,0 < A\; < Ay < 1 such that:

YA€ A, Ao] = Am+ (1 — M €T

YA E (0,A) U(Ag, 1) = A+ (1= N’ €1

The final case is when 7* € (IINII). By axiom [3| since 7* lies in both
II and II, the line intervals 77* and 7*7’ do not intersect either II or II, that
is, 7m* N (TUIl) = @ and 7*7' N (ITUTI) = @. It follows that for all A\ €
(0, A*) U (A*, 1), the convex combination Aw + (1 — A\)7’ remains in I:

Type 4: 7' N(IINT) # @ & ww’m(ﬂuﬁ):z

More precisely, in the final case, if there exists a point 7* € (IINII), then that

point must be unique:
N+ (1=X\)r" € (IINID), \* € (0,1) = VA € (0, \)UX*, 1) : M+ (1-N)n’' €1

By Lemma [1} the line interval 77/, with 7,7’ € I, cannot simultaneously
intersect more than one of the subsets f[, I1, and II N IT within A. Throughout
the proof, the notion of type is used to classify line intervals connecting pairs of

points within the incomplete subset 1.

Lemma 2. For all m € I, the interval w7 corresponds to type 4 in Lemma
as it contains a unique point in ILNII and intersects both I1 and I1 only at that

point.

Proof. %w + %ﬁ is equal to its transpose and by axiom %7‘( + %7‘7 € (IIn1).
Therefore, A+ (1 — \)7 is in IINTI for A = % which corresponds to type 4 from
lemma, [Tk

1 1
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1.1
FUG D= A+ (- Nrel

YA€ (O,2

Lemma 3. For all m,7', 7" € I such that the intersection of I1 UL and each
ar' o’ and 7’7" is nonempty (wn' N (UL # @, nr” N(HUTIL) # @, and
7" N (ILUIL) # @), then either all nn’, 77", and 7’7" have intersection with
11 (r’ NI # @, 7’ NIl # @, and 7’7" N 11 # @) or all wo’,7w”, and 7’7"
have intersection with I (rm' N I # @, o’ N I # &, and 7’7" N i # o). In
other words, according to lemma[l, all 7', 77", and 7’7" have the same type

and it’s either 2 or 3.

Proof. m, 7', 7" € I, and the intersection of ITUII and each line interval 7=/, 77",
and 7’7" is nonempty; therefore, 7', 77", and 7’7" can have one of the types
2, 3, or 4 from lemma Having one of the three types for each side of the
triangle, there are ten possibilities for the type profile of the triangle w#’n”, one
when no two sides of the triangle have the same type, six when exactly two sides
have the same type, and three when all sides have the same type.

If all sides of the triangle have different types, without loss of generality I

can assume 7’ N (IINTI) # @, 7n”’ NI # @, and 7’7" N 11 # @.
d\ € (0,1)1’/T1 :)\17T+(1—)\1)’/T’ GHﬂﬁ

g € (0,1) 1 = Ao + (1 — o) €11

E)I

dA3 € (0, 1) Iy = )\37‘('/ + (1 — )\3)71'” S

By axiom mme C I and by axiom nmg NIl = &, however, this is a
contradiction because w7 and 7ws have an intersection, mime N 7wy # <.
Hence, it is impossible to construct a triangle 77’7” in which each side is of a
distinct type as classified in Lemma [T} see figure

If exactly two sides have type 4, I can assume w7/ N (ILNTI) # @, 7" N (1IN
) # @, and 7’7" NI # @.

3/\1E(0,1):7T1:/\17T+(1—/\1)7T/6Hﬂﬁ

dXs € (0,1):7‘[‘2 :)\27T—|-(1—)\2)7TN elIn
dA3 € (0, 1) M3 = )\37T/+ (]. —)\3)71'// € ﬂ

By axiom [2| w7y € II'NII and by axiom [3} 7m3 NII = @, however, this is
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m = m

Mnl
Figure 2: Triangle mn'n" with a type profile where each side, mn’,
7’ and 7'7", belongs to a different type as defined in Lemmal[i}
A contradiction arises because the intersection of w17 and 73

is required to belong to II, while it must not lie in II. The same
reasoning applies when 77’ is of type 2 and m € IL.

a contradiction because 77y and w3 have an intersection, myme N w73 # <.
Hence, it is impossible to construct a triangle 77’w” in which exactly two sides
have type 4 as classified in Lemma [1} see figure |3} If 7’7" N il #+ & the same
reasoning applies.

n.ﬂ

n = m

Mnnl
Figure 3: Triangle wn’7” with a type profile in which two sides
share the same type (as defined in Lemma [1). A contradiction

occurs because the intersection of mime2 and 7w is required to
belong to I N II, yet it cannot lie in II.
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If exactly two sides have type 2, I can assume 77’ N1 # @, 77" N1l # @,
and 7'7" NI # @.

M e01):m =M r+1-X\)r' ell

X\, € (0, 1) Py = AT + (1 — /\2)7‘(” S ﬁ
dA3 € (0, 1) LMy = )\37‘('/ + (1 — )\3)71’” S ﬁ

By axiom mme C II and by axiom mmg N II = @&, however, this is a
contradiction because 77 and 7wg have an intersection, w7 N7y # &. If
7’7" N (ILNTI) # @ the same reasoning applies.

If exactly two sides have type 3, this is similar to the previous example, and

I can assume 7’ NI # @, 77"’ NI # @, and 7'7" N1 # @.

d\ € (071):7&'1 :)\17T+(1—/\1)7T/ Eﬁ

EH

ELVRS (0, 1) T = Aom + (1 — /\2)7‘(” S

:|>

dAs € (0,1) M3 = )\37'('/ + (]. — )\3)71'// €

By axiom 2| mmy C II and by axiom |3} w73 NIl = @, however, this is a
contradiction because mime and ww3 have an intersection, myme N7y # . If

! 1

7’7" N (IINTI) # & the same reasoning applies.

If all sides of the triangle have type 4, I can assume 77’ N (IIN1I) # &,
ar” N(IINTI) # @, and 7’7" N (IINTI) # @.

3)\1E(0,1):7T1:)\17T+(1—/\1)7T/EHﬂﬁ

3)\26(0,1)Z7T2:/\27T+(1—)\2)7T//€Hﬂ1:[
g € (0,1) : 3 = Mg’ + (1 = Ag)n” € NI

By axiom mme C (ILNTI) and by axiom 3], 73 N (ITUII) = @, however, this
is a contradiction because mime and w3 have an intersection, mime N 7wy # <.
So, I cannot have a triangle m7/7” such that each side has type 4 from lemma
m

Suppose all sides of the triangle are of the same type, either type 2 or type
3. In this case, no contradiction with the axioms arises, since the interior of the
triangle contains a convex region that belongs entirely to either T or TI. More-

over, by Axiom [3] the surrounding region may lie in the incomplete subspace
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without violating any of the stated conditions. |

Lemma [3] states that if there exist three distinct points in I such that the
convex combination of each pair is not entirely contained in the incomplete
subset (i.e., none of the corresponding line intervals has type 1 as defined in
Lemm, then all three line intervals must share the same type. Moreover,
this common type can only be type 2 or type 3 according to the classification
in Lemmal [l

The next step is to show that I contains at most two distinct, disjoint com-

ponents. To formalize this, it is necessary to define the components of I.

Same-component relation R on I: For any m,m, € I, define m Rm, if

there exists a finite sequence {71, 7o, ..., 7, } C I such that

Va e (0,1), Vie{l,....,.n—1}: am+(1—a)m €1

That is, m; and m, are in the same path-connected component of I with
respect to convex combinations (piecewise-linear paths entirely contained in I).
The path is realized by piecewise linear segments connecting m; to m, entirely
within 7.

Component of I: A subset C' C I is a component if it is maximal with respect

to the same-component relation R, that is,

Vi, mg € C' : m Rma, and there exists no m € I\ C such that 7Rm; for

some m € C.

By definition, components are disjoint, path-connected subsets of I under
convex-combination paths, and every point in I belongs to exactly one compo-

nent.

Lemma 4. There are no more than two components in I. For any w, 7', 7" € I,
ifm Rn' and m R ", then n' Rx”.

Proof. The lemma holds if there is none or only one component in I. Otherwise,
assume there exist at least two disjoint incomplete components. Let 7, 7" € T
belong to different components, so that # R 7’. By Lemma [1} the line interval
between 7 and 7', as well as the one between 7 and 7/, must be of one of Types
2, 3, or 4. Furthermore, by Lemma [2| the interval 77 is of Type 4 in the sense
of Lemma |1 By lemma |3 it is not possible to form a triangle 777’ such that
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7w’ ¢ I, given that w7 is of type 4. Moreover, observe that 7’7 being entirely
in I is determined by that of 77’: if one lies entirely in I, so does the other.
Indeed, the line interval 77’ « € (0,1) : ar+ (1 —a)7 consists of the transposes
of the line interval 7’7, 8 € (0,1) : 7 + (1 — B)='.

'}
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Figure 4: Without loss of generality, the interval between 7 and
7' is assumed to be of type 2, as described in Lemma This
implies that the interval between & and 7 is of type 3. The
intervals 77’ and 7’7 both lie in the incomplete subset.

Now assume there is another component in I, and 7" belongs to that com-
ponent. Specifically, 7" is neither in the component of 7 nor in that of =’
(7" R m, " R 7'). Since " R 7, the line 7”7 can be any of the types de-
scribed in Lemma [l except type 1. As 7 is in the same component as 7', it
follows that 7" R 7, and the line 7#/7 is one of the types in Lemma |1, except
type 1. Now consider the triangle 777”". By Lemma |3 such a triangle cannot
exist because 77 is of type 4 according to Lemma [ll This contradiction implies

that there cannot be more than two components in I. |

Convexity of all components in I: For any 7,7’ € I and a € (0,1), if 7

and 7’ belong to the same component, 7 R7’, then

ar+ (1 —a)r’ € 1.

This property ensures that each component of I is convex: any convex com-
bination of two points in the same component lies in I and remains in that

component.

Lemma 5. If there are exactly two nonempty components in I, each component
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is convex and for allm e I: m R 7.

Proof. Let I contain exactly two components, and let w, 7" € I belong to dif-
ferent components, so that # R «’. By Lemma [3| the intervals 7'7 and 77’
lie in the incomplete subset, with 7' R7 and wR7’. Consider a point 7" € I
such that #” R’ and 7" R 7. In this case, the interval 7’7 must be one of the
types described in Lemma |1} excluding type 1. Since 7" R’ permits any type,
assume initially that 7”7’ is of a type other than type 1. Considering the trian-
gle n'7'w"”, with 77’ of type 4 and n”'7’ assumed to have any type other than
type 1, Lemma [3| requires that #’'7” C I, which implies 7' R7”. This, however,
contradicts the assumption 7" R 7 since 77’ C I. Therefore, the interval =''7’
must be of type 1 if #” R/, so that 7”7’ C I. Consequently, 7"/ Rn’ coincides
with 7”7/ C I, and the transpose of the matrix does not belong to the same

component as the matrix itself. |

In general, A may contain zero, one, or two disjoint incomplete components.
In the case of zero incomplete components, the preference is complete. The
sets II and II then cover the entire A, and both are closed and convex. This
configuration ensures the existence of a separating hyperplane, ¢, separating I1
and II:

Tell Z m(x,y)op(x,y) > 0.
(z,y)EX XX

In the case of two incomplete components, the convexity of each component,

together with the convexity of the union of the both the preference set and II

with each incomplete component, implies the existence of two hyperplanes.

2z mexxx T(@y)o1(z,y) 2 0;
relle &

Z(ﬂc,y)eXxX m(x,y)pa(z,y) > 0.

Moreover, II and II lie on opposite sides of each hyperplane. There are four
primary convex regions: II, II, and two disjoint components of I, denoted I;
and I». The unions ITU I; and I U I, are convex and together cover the entire
A, as do the unions ITU I, and TTU I;.
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So I need ¢, and ¢o such that:

Z:(ﬂv,y)eXxX 777(9’77?J)¢>1(9L‘,y) <0
Telle ¢ &

Z(:lc,y)EXxX 7(x,y)pa(z,y) <O0.

A is partitioned into these 4 subsets:

Lomell: 3 pexxx (@ 9)01(2,y) =0, 3o, yexxx (@, y)d2(z,y) = 0;
2. eIl 3, exwx T(@9)01(2,9) <0, 30, hexxx T(@,y)2(z,y) < 0;
3.omelir Yo pexxx M@)oz, y) 20,30 exxx T(@,y)o2(z,y) < 0;
domely Y pexxx @Yoz, y) <0, 3, exxx T(@y)d2(z,y) 2 0.

For any m € A, if m belongs to II, then 7 belongs to II; if 7 belongs to I,
then 7 belongs to I, and vice versa. From the defining inequalities, it follows
that for each m € A, the transpose 7 lies on the opposite side of both ¢; and
b2

Define the property for ¢ : X x X — R as follows:

VreA: Z m(x,y)p(z,y) > 0= Z m(x,y)o(x,y) <O0.

(z,y)eX XX (z,y)eX xX

Lemma 6. ¢ : X x X — R is skew-symmetric, ¢ = —, iff for any = € A

Yoo oalwyelzy) 0= > wl(z,y)élx,y) <O.

(z,y)EX XX (z,y)eX xX

Proof. The sufficiency of the condition ¢ = —¢ follows directly. To establish
necessity, assume instead that ¢ # —¢. Then, there exists at least one element
with ¢;; # —¢;;. Since the property must hold for all 7 € A, consider the case
in which only 7;; and 7;; are nonzero. If ¢;; # —¢j;, it is always possible to
select m;; and mj; such that ¢;;m;; + ¢5;7;; and ¢jm;; + ¢i;7;; share the same

sign, which contradicts the initial requirement. |

Therefore, to ensure that a hyperplane ¢ satisfies the requirement that =
and 7 lie on opposite sides of ¢ for every m € A, condition ¢ = —¢ must hold.

C(X x X) is the space of all real-valued functions on X x X and the subspace
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of skew-symmetric functions is represented as
CP(X xX)={ce C(X x X) :c(x,y) = —c(y,z) for all z,y € X}.

Having two components in [ is equivalent to two hyperplanes ,¢; and ¢2, each
satisfying ¢ = —¢; and ¢y = —¢po or in other words ¢y, ¢y € C*°. This can be
interpreted as the presence of two distinct evaluation systems: each hyperplane
represents one system’s assessment of the pairs in A. Preference is incomplete
in this setting when the two systems produce contradictory evaluations.

For a single-component I, the space A consists of three subsets: II, II, and I,
with IT and II overlapping. Both IT and II are closed and convex, and by Axiom
their intersection ITNII is nonempty. Furthermore, Axiom [3| guarantees that
for each m € I, a non-strict separating hyperplane ¢ exists that separates Il and

II, as established in the next lemma.

Lemma 7. For any m € I, there exists a non-strict separating hyperplane ¢,
¢+ X x X = R, that separates 11 and II such that for all of them, every
7€ (muU(IINT)) lies on ¢:

Z ﬁ'(m,y)<b(x,y) =0.

(zy)eX xX

Proof. II and II are both closed and convex, and by Axiom [2| they overlap only
at their boundaries, meaning that their interiors, denoted int(I1) and int(IT), are
disjoint. Therefore, the Minkowski Separation Theorem ensures the existence
of a hyperplane that separates IT and II; however, this does not guarantee that
for every m € I, there exists a separating hyperplane that also passes through
.

Let 7 € I and 7’ € II. By Axiom [3] for any a € (0,1), ar + (1 — )7’ ¢
II. The set conv(m,II) denotes the convex hull of = and all points in IT and
by axiom [3| since 7 is in I, conv(m,II) UTI = @. The sets conv(m,II) and
COIlV(T(',ﬁ) overlap only at w, and by the Separation Theorem, there exists a
non-strict separating ¢ between them that contains 7. II C conv(m,II) and
il C conv(m, IZ[) Consequently, the separating hyperplane that contains 7 also

separates II and II (non-strictly),

Ly(m)= Y  w(z,y)d(zy) =0.

(z,y)EX XX
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Every point of A lies either on this hyperplane or on one of its two sides.

Without loss of generality, assume that for every 7’ € II

Lo(n)= > (z,y)é(z,y) >0,

(z,y)eX xX

so that every " € 11 satisfies Ly(n") > 0.

Let 7* € (ILNII) and suppose, for contradiction that Lg(7*) < 0. Choose
7' € 1l so that Ly(n') > 0. By Axiom [2] every convex combination of 7* with a
point of IT lies in II, it follows that

Ly(ar*+(1—-a)r’) >0  Vae (0,1).
Linearity of Ly yields
Ly(am™ + (1 — a)n') = aLy(r") + (1 — @) Ly("),
hence the inequality above becomes
aLs(m)+ (1 —a)Ly(n') >0  Vae (0,1).

Taking the limit as o — 1 (or, equivalently, observing that the left—hand side is
affine in &) gives Ly(7*) > 0, contradicting the assumption Ly (7*) < 0. There-
fore Ly(n*) = 0. If instead Ly(7*) > 0, choose 7" € 11 so that Ly(n") < 0;
linearity of Ly, together with axiom [2} which states that every convex com-
bination of n#* and a point of il belongs to ﬁ, forces a contradiction unless

Ly(7*) = 0. So every m* € IINII lies on the separating hyperplane. [ |

By Lemma @ for any hyperplane separating II and II, if 7 € II (or 7 € II),
its counterpart 7 lies on the opposite side of the hyperplane. Moreover, if 7 € I,
then 27 + 17 € (ILN1II) lies on the hyperplane, and by the convexity of the
partition induced by the hyperplane in A, it follows that 7 is on the opposite
side. Since each m € A has its counterpart 7 located on the opposite side,
Lemma [6] implies that these separating hyperplanes must be skew-symmetric,
ie., ¢ € C%°.

The preference set I1 is convex and closed, and by the supporting—hyperplane
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theorem, every boundary point p € OII admits a supporting hyperplane ¢,

Ly(p) = Z p(z,y)d(z,y) = 0.

(z,y)eX xX

Ignoring the hyperplanes on the boundary of A, since they reveal no information
on the structure of II, ® is the set of all such hyperplanes and p € int(A) N OIIL.

Lemma 8. Fvery ¢ € ® defines a non-strict separating hyperplane that sepa-

rates T1 and 11, and it is skew-symmetric. In particular, ¢ = —¢, so ¢ € C°%.

Proof. Let p € int(A)NOII and ¢ be the supporting hyperplane, Ly(p) = 0 and
for all m € II, Ly(m) > 0. Suppose, for contradiction, that there exists p’ € I
such that Ly (p’) > 0. Since p € int(A), for o € (0,1), v — 1:

p// p— (1 — Oé)pl

=———— 7D
(&%

1 11—«
Lo(0") = ~Lo(p) -

Lg(p") < 00 p” ¢ I Since ap” + (1 — a)p’ = p, if p” € I, by axiom |3
p ¢ TI, otherwise if p” € I, by axiom [2| p ¢ II and both cases contradicts

Ly(p 0.
o o) —

with the initial assumption that p € II. Therefore, there is no p’ € II such
that Ly(p’) > 0. For any 7 € TN, Ly(nr) = 0 and for any 7= € I, since
%w + %7? € (ITN 1) lies on the hyperplane, 7 and 7 are not in the same side of
the hyperplane. Thus, by lemma[f] ¢ € C5*. |

® is the collection of the supporting hyperplanes that characterize II within
A and & C C*%:

Tell & Z m(x,y)p(xz,y) >0 forall ¢ € P.
(z,y)EX XX

A.2 Proof of Theorem [2

Let IT admit an incomplete correlation-sensitive representation; that is, there
exists a nonempty subset ® C C*(X x X) that represents II. Consider a
joint distribution mapc € A(X?) over three options, and denote its pairwise

marginals by map, mpc, and mac.

map €le > map(zy)o(z,y) >0 Ve d,
(z,y)EX XX
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mpc €EMe > mpo(z,y)d(z,y) >0 Vo,
(z,y)eX xX

TAC cell & Z 7TAC(‘%'a:'J)ql)(‘CI"'a:l/) ZO v¢€ o.
(z,y)eX xX

The pairwise marginals can be determined in terms of m4pc, allowing the

inequalities to be rewritten as

map€lle > mapo(e,y,2)d(x,y) >0 Vo e,
(z,y,2)€X3

TBC € I & Z WABC((E7y,Z)¢(y,Z) Z 0 Vd) S CI)a
(w,y,2)€X3

Tac €l & Z wapce(z,y, 2)p(x,2) >0 Vo € D.
(z,y,2)EX?

Strong transitivity requires that if map € II and wgc € II, then mac € II.
To establish sufficiency, suppose that ¢(z, z) = ¢(z,y)+¢(y, z) for all ¢ € & and
z,y,z € X, where Ly(m) = Z(w DEX KX 7(x,y)¢(x,y). Under this condition,

Ly(mac) = Ly(ma) + Ly(mpc) Yo € .

Hence if),
L¢(7TAB) >0, L¢(7l'Bc) >0 Vped,

then
L¢(7TAO) >0 VYoeo,

and therefore

mag €1, 7wpe €1l = myc € 1L
Moreover, since every ¢ € ® is skew-symmetric, the condition

holds automatically for all z,y, z € X, whenever X contains only two elements.
For necessity, it must be shown that a violation of strong transitivity requires

at least three distinct outcomes in X and the existence of some ¢ € ® such that

oz, 2) # o, y) + ¢(y, 2)
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for some x,y,z € X.

Strong transitivity requires that if for all ¢ € ®, Ly(map) > 0 and Ly(7mpc) >
0, then for all ¢ € ®, Ly(mac) > 0. Consequently, if for all ¢ € ®, Ly(map) >0
and Ly4(mpc) > 0, but there exists some ¢ € ® such that Ly(mac) < 0, then
strong transitivity is violated. The remainder of the proof establishes the exis-
tence of such a case when X contains at least three outcomes, X = {z,y, 2},
and there exists ¢ € ® such that ¢(z,2) # ¢(x,y) + ¢(y, 2).

Let X = {z,y,z}, and consider three options A, B, and C. In general,
there are 3% possible states corresponding to the combinations of outcomes for
the three options. Denote these states by s;, ¢ = 1,2,...,27. Given this state
space and the associated probabilities p; for each state, the correlation structure

among the options is fully characterized.

51 | S2 | S3 | 54 | S5 | S6 | --- | S10 | S11 | S12 | --- | S25 | S26 | Sor
Alz |z |z |z |x|x|... Y y yo|... z z z
Blz |z |z |y |y |y]|... T T G A z z
Clxz |y |z |lx|yl| z]|... x Y z | ... x y z

Table 2: Possible states for three options, having X = {z,y, z}

map denotes the correlation structure between options A and B, with the
outcomes of A indexed by rows and those of B indexed by columns. By the in-
complete correlation-sensitive representation, the inequalities can be rewritten,

and if map, Tpc, Tca € II, then there is a cycle unless map, Tpc, Tca € HNIL

mag €1l & ijd)(xf,xf)zo Vo € O,
J

o €1l & ijéﬁ(xfa%c) >0 Voeo,
J

mTca €11 & ij(b(:cf,a:;‘) >0 Voped.
J

To express the inequalities above in matrix form, let p denote the column

vector of state probabilities, with transpose

PT: pr D2 ... P27}~

Let Fj; denote the coeflicient matrix associated with ¢ € ®. Since each ¢ is
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skew-symmetric, Iy is fully determined by three parameters:

¢(.’E, Z) = Qzz, (b(xvy) = ¢zy7 ¢(y72) = ¢yz

The inequality Fyp > 0 generates a cycle for ¢ (A 2 B 7 C 7z A), unless
F¢p =0.

0 0 0 ¢my ¢ry ¢zy _¢zy _¢zy _d)my 0 0 0
Fy=10 ¢ay ¢az —¢ay 0  Syz . 0 Gay ¢az . —¢az —¢yz 0
0 _¢;ry _¢mz 0 _¢wy _¢zz ¢zy 0 _¢yz ¢a:z ¢yz 0

A violation of strong transitivity requires the existence of a probability vector
p such that, for all ¢ € &,

ij(b j,j)ZO, ij¢ ]7]

but for some ¢ € ¥,

Zp] ], J > 0.

Construct a matrix F' that collects the coefficients from all inequalities and
includes every ¢ € ®. The first three rows correspond to the ¢ generating the
cycle, and for each remaining ¢’ € (®\ ¢), the first two rows of Fy, are appended
to F. If there exists a probability vector p such that

.
sz[o o0t 00 ... 0/, p>0, 1'p=1,

then strong transitivity is violated.
Let m denote the number of functions ¢. Define the primal and dual systems
as follows:

Primal system:
PZ{pERW}szb, p >0, 1Tp:1}
Dual (alternative system):
D={(g,\) eER*™' xR |¢g>0, FTlg+A1<0,b'g+A>0}

By Farkas’ lemma, exactly one of the two systems P or D has a solution, but
not both. If the dual system D does not have a solution, then the primal system

‘P admits one, and the strong transitivity is violated.
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If ¢! is the function that generates the cycle and violates strong transitivity,
the matrix F is composed of Fjs and the first two rows of Fy for all ¢ € (®\ ¢!).
The structure of Fy, depends on the nature of the states with three outcomes
in X. There are three distinct cases to consider. First, if all options yield
the same outcome, the corresponding column in Fj consists entirely of zeros,
reflecting the triviality of such states. Second, if only two options share the same
outcome, each ¢ produces three inequalities, represented as three rows in Fy,
where one element in the column is zero and the remaining two are negatives
of each other. It is important to note that, in this case, since all possible states
are considered, there must also exist a column in Fy that is exactly the negative
of this one. This structural property implies that for every such configuration,
its inverse configuration is necessarily included. Third, if each option yields a

unique outcome, the column associated with each ¢ contains all three elements:

d)(xv Z)’ 7921)(55’ y)7 and 7¢(y7 Z)

ro o 0 @b, By Fny - —bny, —hy —Fh, - O 0 07
0 ¢r, ¢r. —¢n, O by . 0 Pl PL. .. —¢L. —¢,. 0
0—¢L, —¢L. 0 —¢r, —¢r, o dhy O —dL .. br. b, O
0 0 0 ¢%, ¢, ¢, . —dh, —dh, —d7, . 0 0 0
F=Tlog, o0 —62, 0 ¢ o 0 ¢, ¢ . —62 9.0
0 0 0 ¢ G eI L gl —gm —gT L0 0 0
LO o3y, due —dny 0 by . 0 9n o .. —dpL —¢y 0]

To determine whether the system D admits a solution, it is crucial to ana-
lyze the role of the parameter \. Let F'T denote the transpose of F. Because F
contains columns that are exact negatives of one another, F'T accordingly pos-
sesses rows that are pairwise negatives. As a result, the product F'" ¢ inherently
contains components that are negatives of each other. Consequently, a positive
value of A cannot satisfy the system, as adding A1 cannot simultaneously render
all elements of F'T ¢ + A1 smaller than or equal to zero, or in other words, all
elements of F'Tq strictly negative. This structural property rules out A > 0
as a feasible parameter and therefore directs attention to the case A < 0 when
exploring the existence of potential solutions.

For A = 0, the system D becomes
(¢,0): FTg<0, ¢>0, q#0, blg>0.

The only non-zero element of b is its third element. To ensure that b’ ¢ > 0,

the third element of ¢ must also be positive and non-zero. Furthermore, each
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element of F''q is smaller than or equal to zero. For those rows of F'T whose

negatives are also present in F', the corresponding components of F'T¢ must
be equal to zero.

r O (1] 01 0 (2) 0 0 A~
0 ¢wy _¢my 0 ¢zy 0 ¢:L
0 ¢, —dp. O . - 0 g
¢1 _¢1 0 ¢2 _4)2 ¢nz _¢7n
oy zy ; zy zy zy zy
buy O Gy ¢z, O @, O
1 1 1 2 2
¢1y ¢yz _¢1z ¢zy ¢yz ¢Z; ¢;nz
1 2 2

bh. —bp. O PE. —dL. - ¢TI —om
bpr —ys —buy Pr. —dh. - DL —PYL
2

¢, 0 —di. @5, O - gL 0

—day Oy, —9%, O - =07 0

—buy Poz —Pys —Pay Paz v —bzy Pos

T 0 _¢:lny ¢ulcy 0 _‘Zsiy 0 _¢ZL
F' = 0 0 0 0 0 0 0
0 ¢y, —dy. 0 ¢y, = 0 o

1 1 1 2 2 7
¢yz —baz ¢my ¢yz — P ¢1:/”z — by
1 1 2 2 )
by —Pys 0 By —dy. o B —oL

by 0~ dh. 0 o Gl 0
—¢y., 0 L. —¢2. 0 - —¢L O
—br. bhy by, —OL. Ph, o —OLL ST,
—br. bh. O =L, PE. - —¢L ST
—by. —br, br. —0L. —d3, - —duL —T
—¢y. 0 by —dy. 0 o —gpL 0
—¢y. by O —2. BL. - —grt o

0 —¢b, ¢y, O —¢2. - 0 —oI

0 —¢i. ¢p. O —¢2. - 0 —¢7
- 0 0 0 0 0 0 o -

To simplify the problem, note from the structure of F' that

Row 10 = —Row 5, Row 11 = —Row 4, Row 13 = —Row 2,
Row 19 = —Row 9, Row 21 = —Row 7, Row 25 = —Row 3,
Row 23 = —Row 18, Row 24 = —Row 17, Row 26 = —Row 15.

This implies that the corresponding components of F'T ¢ must be zero for the
rows listed above. Row 8 is equal to Row 5 + Row 9 — Row 6 and again, since
both Row 8 and its negative, Row 6, are in the rows, to satisfy F''q < 0,

the corresponding element of F'T¢ to those rows must be equal to zero. The
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corresponding components of F'T ¢ for rows 12, 16, 20, and 22 must also be zero:

Row 12 = —Row 6 + Row 3 + Row 15,
Row 16 = —Row 8 + Row 7 4+ Row 17,
Row 20 = —Row 8 + Row 13 + Row 26,
Row 22 = —Row 6 + Row 4 4+ Row 24.

To satisfy F'T¢q < 0, note that, given the structure of F, every component of

FT g must in fact be zero. Moreover, since some rows are repeated, I can further

simplify F.
Row 5 = Row 2 + Row 4,

Row 9 = Row 3 + Row 7,
Row 18 = Row 15 + Row 17.

Given that some rows are linear combinations of others, and now that the prob-

lem is reduced to FT¢ = 0, I can remove those dependent rows. It suffices to
keep rows 2,3,4,6,7,15,17, which I denote in a different order as F'T*:

1 1 2
1 1 2
0 Tz _¢wz 0 Tz e 0
1 1 2
0 yz _¢yz 0 yz T 0
Tx _ 1 1 2 2 m
F - zy — Pay 0 zy ~ Pxy 77 Ty
1 1 2 2 m
Tz _¢wz 0 Tz _¢$z e Tz
1 1 2 2 m
yz _¢yz 0 yz _(byz T yz
1 1 —g! 2 2 L m
LY zy yz rz Ty yz zy

m
Yy
m
Tz
m
yz

_am

Yy

_am

Tz

_4m

Yz
m
Yz

As mentioned before, the third component of ¢ is strictly positive, ¢13 > 0,

while all other components are non-negative. Let

(IT = [(Ju g2 1 @1 g2 ... Gmi Qm2} )
th = {(Jll g1 ... le} ,
T _
> = {fhz g22 ... sz} .

Define vectors ¢, ¢,,, and ¢, as follows:

o :{ 1 2 m]
ry xy Ty Ty |
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T
¢a:z:[:lcz iz Zi|’
T
Oy = 0. 3 . op)
The equations in F'"*q = 0 can be rewritten as a set of separate equations:
T 1
QQ d)zy - ¢ajy = 07
T 1
dz d)zz - d)mz = 07
T 1
dz ¢yz = Pyz — 07
T T
T ¢$y — 4> ¢wy =0,
T T
q1 d)xz — 4> d):vz = 07
T T
q (»byz — 42 ¢yz = Oa
T T 1
4 d)wy + G d)yz - ¢zz =0.
By solving these equations, I obtain

T _ 1
d2 yz—¢yzv

0 Py = 43 Doy = Dzy
1 1 1

This final equation contradicts the initial assumption that, for ¢!, ;y + qﬁ;z #
1. Therefore, if A = 0, the dual system does not have a solution.

If A <0, the system D becomes
(¢,\): max(FTq)<-A<b'q, q>0, A <.

The only non-zero element of b is its third element, b5 — 0. To ensure that
bTq > 0, the third element of ¢ must also be positive and non-zero, g5 > 0.
Furthermore, among the components of F'T¢, the maximum must be smaller
than or equal to —\. Since there are rows in F'T whose negatives are also present
in FT, max(F"q) is greater than or equal to zero. max(F 'q) = 0 implies that
all components of F'Tq are equal to zero. This leads to a situation analogous

to the case I analyzed for A = 0, which ultimately results in ¢}, + ¢,. = &5,
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thereby contradicting our initial assumption.
(¢, \): 0<max(F'q)<-A<bg, q>0, <0,

T _
q *[QM g2 1 @1 g2 ... Gm1 sz]-

For any arbitrary b3 — 0%, I have 0 < maz(F "q) < bz. This implies that
each component of F'Tq is strictly less than bs. Accordingly, the independent

equations can be rewritten separately as follows:
T 1
|q2 (bmy - acy| < b37

|45 P — 1. < bs,

43 @, — bp.| < bs,
0] By — @3 Doyl < b,
190 Pz — @ Bl < b3,
91 &y, — @ D] < bs,

4 Duy + @3 Py, — G < b3,
4 b, — @ Gy — bry < b,
G Puy + @3 Puo — by, < b3,
Q1T¢yz —q Py + ¢r, < bs,
—q1 P+ G5 Dy + Dy < bs,
_q1T¢yz - qQquacy + ¢ < by.

Consider two of the inequalities:

For each inequality, the left-hand side can be manipulated by adding and sub-

tracting the same term, as shown below:
T T 1
a1 ¢zy + 4o ¢yz = Pz —
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qrd):cz - q;—d)yz - ¢:1ry =
qirqsmz - q;qbrz + q;‘bmz - ;cz + (balcz - q;d)yz + ¢3112 - ¢11;z - ;}cy =
(qrd);rz - q;—¢zz) + (q;¢wz - ¢;z) - (q;¢yz - ¢1}/z) - (d):}:y + ¢7}/z - (b;z)

Taking the terms in the first three parentheses to the right-hand side of each
inequality, I obtain:

( alvy + (bgl;z - ;z) < b3 - (qird)ly - q;d)ly) - (q2T¢1,y - iy) - (q;(z)gz - gljz)’

_<¢iy + Q%/z - d)i:z) < b3 - (q;rqbwz - q;d)wz) - (q;—¢wz - (b:lvz) + (q;—(byz - (b:LljZ)

According to the condition max(FTq) < bs, each of the expressions in the
parentheses on the right-hand side of each inequality has an absolute value

strictly less than b3. Substituting these bounds into the inequalities,
((b;y + (bgl/z - d);z) < 4b37

By the initial assumption (bglcy + ¢11/z — ¢l # 0, the bounds max(F " q) < b3

imply the necessary feasibility condition

|¢;y + ¢g}/z - ¢i’z| < 4bs3

for the dual system D. Hence, choosing b3 > 0 so small that
bs < 2|6k + 0) — oL.]
3 47y Yz Tz

makes D infeasible for A < 0. By Farkas’ lemma, P is then feasible. Conse-
quently, if there exists ¢ € ® and at least three distinct outcomes in X such that
o(z, z) # ¢(x,y)+P(y, z), some b > 0 can be selected so that the primal system
admits a solution that constitutes a cycle and violates strong transitivity.

It has been shown previously that for A > 0, no ¢ exists such that the dual
system has a solution; therefore, the primal system admits a solution. Based
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on this, I can argue that the existence of at least three elements x,y, z € X for
which

oz, 2) # o, y) + ¢(y, 2)

for at least one function ¢ € @, leads to a violation of strong transitivity. Hence,

the condition
b(z,2) = d(a,y) + 9(y,2) forall ¢ € @

is necessary for strong transitivity.
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